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Highlights

How energy strategies are shaped by the correlation of uncertain-
ties

Antonio F. Rodriguez-Matas, Carlos Ruiz, Pedro Linares, Manuel Perez-
Bravo

• First study to systematically integrate parameter correlations into strate-
gic energy planning.

• Case study on Spain’s 2030 decarbonization reveals how correlation
affects strategies.

• Decarbonization strategies significantly vary with the degree of corre-
lation.

• The correlation of fossil fuel price and renewable cost impacts renewable
deployment.
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Abstract

In the face of the global climate crisis, countries worldwide are striving for
a shift in their energy systems from fossil fuels to renewable energy sources.
This complex energy transition faces significant uncertainties, which must be
addressed correctly to produce resilient and reliable investment strategies.
This study systematically incorporates, for the first time, the correlation
between uncertainties into a strategic energy planning model, in order to de-
termine robust and consistent decarbonization strategies. Using the Spanish
energy system as a real-size case study, we assess the impact of accounting
for the correlations between primary energy prices and energy technology
investment costs on strategic energy decisions. Our results reveal that de-
carbonization strategies significantly vary with the degree of correlation, and
hence not accounting correctly for it may result in significant errors. When
compared to the uncorrelated baseline scenario, a positive correlation results
in increased fossil fuel use and reduced renewable deployment, whereas a neg-
ative correlation leads to higher renewable deployment and electrification.
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Introduction

In response to the global climate crisis, numerous countries have pledged
to achieve climate neutrality by 2050 as outlined in their Nationally Deter-
mined Contributions (NDC). This goal requires a profound transition from
fossil fuels to renewable energy sources [1]. To meet this target, decision-
makers must understand energy systems dynamics and anticipate the con-
sequences of their actions. Strategic energy planning models are crucial for
this task [2].

However, the energy transition faces significant uncertainties, including the
development of key decarbonization technologies [3, 4], changes in energy
demand behavior [5], geopolitical instability affecting energy and material
access [6], or climate change impacts [7, 8]. Accounting for these uncertain-
ties in long-term energy planning is essential to avoid wrong decisions and
potential lock-ins.

Many planning exercises have tried to address these uncertainties, through
different approaches. However, most consider uncertainties as independent
factors, which may result in significant errors. Relevant variables in energy
planning are usually correlated, making it essential to incorporate these cor-
relations to create coherent scenarios. A significant case is the correlation
between uncertain primary energy prices and uncertain investment costs for
energy technologies.

On the one hand, primary energy prices, such as natural gas and crude oil,
often exhibit high positive correlations due to their substitutability and mar-
ket indexation [9]. Therefore, it is important to consider scenarios where
fuel prices align with their historical covariance. Ignoring these correlations
may lead to incoherent pathway recommendations, such as favoring CNG
and LNG as transport fuel substitutes during high petroleum prices, which
is unlikely to be an optimal option since crude oil prices significantly impact
natural gas prices [10].

Similarly, the investment cost of energy conversion technologies is typically
correlated due to shared materials or manufacturing processes. For instance,
the use of steam turbines in both combined cycle and nuclear plants mean
that an increase in their production costs, driven by rising steel prices, could
impact investment costs for both technologies simultaneously. Conversely,
technological advancements or economies of scale could reduce costs for both.
This interdependency also applies to other technologies sharing components,
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materials, or manufacturing processes.

Lastly, cross-correlations between primary energy prices and investment costs
of energy technologies mainly arise from the use of fossil fuels in various
stages of technology production. Fossil fuels are involved in producing basic
materials [11], high-temperature industrial processes [12], transporting tech-
nologies (e.g., sea transport from a Chinese factory to a photovoltaic plant
site in Spain), and installation (e.g., ships and platforms for offshore wind).
Including these cross-correlations provides a more comprehensive consider-
ation of costs across supply chains, adding significant value and coherence
to the analysis. Following previous examples, crude oil significantly affects
natural gas prices, which in turn impacts steel production costs, affecting the
investment costs for both nuclear and combined cycle plants through their
reliance on steam turbines.

Thus, incorporating these correlations is crucial for capturing real market
dynamics and cascading effects often ignored or treated as independent in
energy planning, and hence to design consistent planning strategies.

This importance has already been recognized by several studies in the liter-
ature. For instance, Abdalla et al. [13] highlights that including correlations
between uncertainties can lead to less conservative outcomes and reduced
generation expansion costs. Similarly, Cao et al. [14] emphasizes that assum-
ing independent uncertain parameters, as done in most studies, may lead to
suboptimal results, underlining the need to consider correlations to ensure
optimal solutions. Furthermore, Roldan et al. [15] and Wang et al. [16] also
discuss the relevance of addressing correlated uncertainties in transmission
network planning and the interplay between demand response and renewable
energy sources, respectively. Collectively, these studies reinforce the neces-
sity of incorporating correlations to improve the coherence and accuracy of
energy planning scenarios.

Despite the importance of considering the correlation between uncertain pa-
rameters, the literature review (detailed in Appendix A1) shows that most
existing energy-related works focusing on them address single subsectors such
as electricity: generation expansion planning [13, 17, 18, 19, 20], transmission
network expansion planning [15, 21], demand response planning [22], and en-
ergy storage planning [14, 23]. Notably, the work from Patankar et al. [24]

1All appendices are included in the supplementary material
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represents the first and only attempt to introduce correlations in strategic
energy planning across the entire energy sector. Despite the significant gap
this work addresses and its excellent methodological development, it only
considers the autocorrelation of uncertainties, i.e., the correlation of a single
parameter with its historical values (e.g., natural gas actual price with its
past prices). It does not account for correlations between different parame-
ters (e.g., crude oil and natural gas prices) or their cross-correlations (e.g.,
natural gas prices and combined cycle plant investment costs). It is worth
noting that there are also other types of analyses and techniques used in the
energy sector to explore relationships and interactions between energy sec-
tors. For example, Input-Output (IO) analysis is one of the techniques used,
which helps in understanding economic trends and interdependencies across
various industries, providing valuable insights into how sectors influence each
other [25]. However, while these methods are effective for capturing relation-
ships in sectoral dynamics, they do not directly apply to the optimization
models typically used in long-term energy planning. Thus, no prior research
has incorporated correlations between different uncertain parameters in a
strategic energy planning model for multiple energy vectors. This gap likely
exists due to the increased complexity of such optimization models and the
traditional focus on minimizing computational complexity in energy plan-
ning.

Regarding the type of correlations considered in the literature, the vast ma-
jority considers uncertainties between (i) renewable generation and electricity
demand [18, 19, 20, 15, 21, 22, 14, 16, 26, 27, 28]; and (ii.a) renewable gen-
eration from different plants (e.g., two PV plants in a different location)
[17, 29, 30], or (ii.b) the generation of different renewable technologies (i.e.
PV and wind production) [13, 23, 31]. However, correlations between fuel
prices and energy technology investment costs have not been studied, despite
their significant impact on the energy supply chain.

This study aims to address these gaps by analyzing the effects of incor-
porating correlations between primary energy prices and investment costs of
energy technologies in energy planning. Uncertainties are incorporated in the
model by a Robust Optimization (RO) approach. This technique is specif-
ically designed to find optimal solutions that guarantee their feasibility for
all possible realization of the uncertain parameters within an uncertainty set
[32]. We focus on polyhedral uncertainty sets [33, 34] because they are ver-
satile enough to model correlations and uncertainties among historical data,
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but also because they enable the obtention of tractable deterministic coun-
terparts. However, the most typical data-driven polyhedral uncertainty sets,
either fail to capture correlations (e.g. “box” or “budget” uncertainty sets)
rendering over-conservative solutions, or result in larger counterpart formula-
tions (e.g. “convex hull” uncertainty set), which are difficult to solve. To this
end, in this paper we employ the methodology proposed by Cheramin et al.
[35] which proposes to reduce the dimension of the polyhedral data driven
uncertainty set, and hence improving its computational performance, while
keeping the maximum amount of information regarding data correlations. In
particular, they propose to use Principal Component Analysis (PCA), a well
stablished linear dimensionality reduction technique [36], that allows identi-
fying the components of the data with that explain most of its variability.
Moreover, Cheramin et al. [35] show how the level of conservatism in the
robust solution can be adjusted by including more or less PCA components
to define the polyhedral uncertainty set. A case study focused on the decar-
bonization of the Spanish energy system by 2030 [37] illustrates the impact of
considering these correlations. This case study shows the applicability of this
analysis to real-size countries or regions. Furthermore, it addresses an addi-
tional complexity arising from the long-term evolution of these correlations:
while fossil fuel prices and energy technology investment costs may remain
correlated, technological and market developments might allow for their de-
coupling over time. By modifying these correlations into three scenarios, the
study aims to explore how the degree of correlation affects decision strate-
gies, and the impact of fossil fuel prices on renewable energy deployment.

We summarize the key contributions of this paper as follows:

1. We apply an innovative robust optimization technique based on PCA
to a strategic energy planning model, incorporating correlations be-
tween different uncertain parameters. According to the literature re-
view, this research is the first to systematically incorporate these cor-
relations within a strategic energy planning model that accounts for
several energy vectors.

2. We present a case study focused on the decarbonization of the Spanish
energy system in 2030, introducing for the first time the correlations
between uncertain fuel prices and energy technology investment costs.

3. By varying the degree of these correlations, we assess the sensitivity of
decisions to these correlations and evaluate their impact on the poten-
tial decoupling of fossil fuel prices from renewable energy costs.
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Methods

The energy model: openMASTER

This study has been conducted within the framework of openMASTER,
an open-source strategic energy planning model. This model can be used
as a tool for supporting decision-making about designing public policies and
investment pathways in the energy sector. It is especially useful for under-
standing the functioning of the energy sector as a whole, its vulnerabilities,
opportunities, and trade-offs.

openMASTER is a Pyomo-based model. It operates as a dynamic (multi-
stage), bottom-up, partial equilibrium, linear programming (LP) model, aim-
ing to meet an exogenous demand for energy services across various sectors.
It achieves this by adhering to technical and policy constraints while mini-
mizing a comprehensive objective function that includes total economic costs
of energy supply, social costs of greenhouse gas emissions and pollutants, and
intangible costs such as discomfort of transport.

The model is built according to a scheme of processes and flows detailed in
Figure 1 encompassing the entire energy sector, including primary energy
import and domestic consumption, energy conversion and storage technolo-
gies for final energy production, and supply technologies to provide energy
services. The energy services’ exogenous demand is characterized using sev-
eral parameters, including Activity Factors, Demand Characterization, and
Macro Data.

The main equations of openMASTER include the objective function, balance
equations, storage equations, capacity constraints, and electricity generation
reliability constraints. Balance equations ensure the conservation of energy
across all processes, while storage and capacity constraints ensure proper
performance and operational functionality. The model also integrates con-
straints to ensure reliability in electricity generation and considers endoge-
nous behavioral measures, capturing the impact of specific social measures
across the energy value chain. Emissions accounting and constraints on emis-
sions and carbon budgets further enhance the model’s capability for compre-
hensive energy policy analysis. For a more comprehensive understanding of
the openMASTER model, readers are encouraged to refer to [38].

For this study, a version of openMASTER that incorporates an algorithm
based on robust optimization for handling uncertainties [39] has been used
as a starting point. The model was then modified to include correlations
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based on the approach by Cheramin et al. [35], as further explained in the
next subsection.

A data-driven robust optimization technique for including correlations

Historically, various methodologies have been employed to address un-
certainties in energy planning models. Prominent among these is scenario
analysis, which constructs narratives for qualitatively studying uncertainties
[40, 41, 42, 43]; stochastic programming, which assigns probabilities to differ-
ent potential scenarios [44, 45, 46]; and robust optimization, which develops
solutions based on worst-case scenarios, minimax regret, or least sensitivity
[39, 47, 48, 49]. Each approach, despite its merits, relies on constructing
representative scenarios, or uncertainty sets, to support decisions but, in
general, it is not straightforward to systematically incorporate the inherent
correlations between multiple uncertainties. This often results in treating
uncertainties as independent phenomena or requires manual handling, such
as in scenario analysis.

The literature review shows that some studies have attempted to include
correlations through various methodologies. However, none have applied
these methods to different parameters in long-term energy planning mod-
els, especially in the crucial case of the correlation between fuel prices and
technology costs. Popular approaches include the Cholesky Decomposition
[20, 27], a mathematical technique that decomposes a covariance matrix into
the product of a lower triangular matrix and its transpose, allowing for the
construction of a set of correlated random variables. It is mainly reserved for
sensitivity analysis and statistical applications, such as Monte Carlo simula-
tions, to explore the range of possible outcomes and assess decision robustness
under different scenarios. Additionally, some works utilize Copula functions
to generate a joint probability function for two uncertainties initially mod-
eled with independent probability functions [23, 26, 28, 29, 31, 50]. This
approach could be applicable in models based on Distributionally Robust
Optimization [51], which extends the robust optimization approach by con-
sidering the uncertainty of a parameter’s distribution function rather than
its specific values. However, this technique is less suitable for dealing with
epistemic uncertainties found in long-term energy planning, as these involve
incomplete knowledge about the future, which traditional probabilistic meth-
ods cannot capture. Epistemic uncertainties encompass fundamental gaps in
understanding the evolution of complex systems, making it difficult for past
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behaviors to represent future outcomes accurately.

Lastly, robust optimization, based on the Wald decision criterion, prepares
for the most adverse scenarios. A critical requirement within this methodol-
ogy is the definition of uncertainty sets, outlining the potential range of values
for uncertain parameters [? ]. The challenge in incorporating correlations
lies precisely in the intricate design of these uncertainty sets. The first robust
optimization approach, proposed by Soyster [33], relies on box uncertainty
sets (refer to the black rectangle in Figure 2), which represent uncertainties
within a rectangular space, resulting in overly conservative outcomes due to
the limited correlation space captured. Since then, various techniques have
emerged, each attempting to mitigate the conservatism associated with this
methodology. One widely adopted approach, proposed by Bertsimas and Sim
[34], relies on budget uncertainty sets (refer to the green lozenge in Figure 2),
which introduce a control parameter to balance robustness and conservative-
ness, reducing the number of uncertain parameters at their worst realization,
but still do not consider correlations between uncertainties. A proposal aim-
ing to incorporate correlations involves defining convex hull uncertainty sets
(refer to the red polygon in Figure 2), which represent the smallest convex
set encompassing all possible scenarios, capturing correlations but at a high
computational cost, making them unsuitable for real-size strategic energy
models.

A novel methodology, previously unapplied to energy models, presents an
opportunity to reconcile reasonable computational costs with the integration
of correlations among uncertain parameters. This innovative approach, pro-
posed by Cheramin et al. [35], is based on Principal Component Analysis
(PCA). Unlike traditional robust optimization techniques based on box or
budget uncertainty sets, this approach can use historical data to capture the
interdependencies among uncertainties to build a more nuanced representa-
tion of the uncertainty set (refer to the blue rectangle in Figure 2). Data-
driven techniques have gained increasing popularity across various fields, in-
cluding energy systems, where they enable more precise decision-making un-
der uncertainty [52, 53, 54, 55]. Therefore, PCA helps develop data-driven
polyhedral uncertainty sets that address the limitations of conventional poly-
hedral sets by capturing the correlations and allowing direct trade-offs be-
tween tractability and conservativeness: incorporating more principal com-
ponents can pose additional challenges in computational complexity, but in
exchange, it yields a more robust solution.
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Figure 2: Definition of uncertainty sets for two correlated uncertain parameters. Black:
Box [33]; Green: Budget [34]; Red: Convex hull; Blue: PCA-based uncertainty set includ-
ing correlation [35]. Source:[35]

Therefore, this PCA-based technique offers the potential to design robust de-
cisions that address uncertainties while incorporating inherent correlations
and maintaining computational feasibility. However, due to its novelty, it
has only been used illustratively in the original work by Cheramin et al. [35]
showing simple examples of the formulation for the knapsack problem and
the power grid problem. It has never been applied in a real case study anal-
ysis of investment uncertainty, or in a full-scale energy model. This study
aims to bridge this gap by applying it to achieve robust decisions in strate-
gic energy planning, aligning this methodological advance with its practical
application.

Applying this method to the openMASTER model involves making the nec-
essary modifications for its implementation. These modifications involved
applying the scenario-induced uncertainty set proposed by Cheramin et al.
[35]2:

2Following notation from [35], we denote scalar values by non-bold symbols, e.g., m1,

while we represent vectors by bold symbols in the column form (e.g., u = (u1, . . . , um)
⊤
).

Italic subscripts represent indices, e.g., cg, while non-italic subscripts indicate simplified
specifications, e.g., UPCA. Symbol || · || denotes the Euclidean norm. The number of
uncertain parameters, i.e., the size of random variable vector, is denoted by m and u =
(u1, . . . , um)

⊤ ∈ Rm represents the random variable vector. We adopt N to denote the
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Upca(S,m1) =

u : u = s̄+

m1∑
i=1

(
αi

(
ωi

||di||
di

)
+ (1− αi)

(
ωi

||di||
di

))
+

m∑
i=m1+1

ωi + ωi

2||di||
di, 0 ≤ αi ≤ 1, ∀i ∈ [m1]

 ,

where

ωi =
N

max
j=1

{
sj0 · di

||di||

}
∈ R, and ωi =

N
min
j=1

{
sj0 · di

||di||

}
∈ R,

meaning ( ωi

||di||di) and (
ωi

||di||di) are the largest and smallest projected centered
scenarios onto the principal direction di, respectively. The sample mean s̄ is
added to Upca(S,m1) because the scenarios have already been centered at s̄.

This uncertainty set is applied to the uncertain parameters of primary energy
prices and investment costs of energy technologies. These parameters are part
of the objective function. Thus, Equation 1 has been modified, representing
the annual cost variable affected by these uncertainties. This annual cost
variable is integrated into the objective function in the openMASTER model:

vUncCosty = pY rGap ·
∑

pe,s,d,h

pUncpe,y · (vQPEImppe,y,s,d,h + vQPEDompe,y,s,d,h)

+
∑
ce

pUncce,y · vCENewCapce,y

(1)

where pUnc represents both the primary energy price for the subset pe (i.e.,
Primary Energy) and the investment cost of energy technologies ce (i.e.,
Conversion Energy technologies). As these two subsets are part of the same
parameter, they are indicated by subscripts in the equation. The parameter
pY rGap is a scalar representing the year gap for which each representative
year of the model is solved, and for which operating costs, including the
primary energy consumed, must be summed. In this case study, the gap
used is 5 years. Regarding the variables, vQPEImp and vQPEDom are
the imported and domestically consumed primary energy, respectively. The
variable vCENewCap is the newly installed capacity of energy conversion
technologies. The subscripts y, s, d, and h represent the temporal subsets

number of available scenarios for u. Symbol S represents the set of the N scenarios,
where each scenario is denoted by sj ∈ Rm, i.e., sj ∈ S, ∀j ∈ [N ]. The number of utilized
principal components in the scenario-induced uncertainty set is indicated by m1.
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year, season, day, and hour, respectively, given that openMASTER has been
configured to work for this case study with a temporal horizon from 2020 to
2030, with four seasons and one representative day per season with 24 hours.
In total, 288 time slices.

The following provides a step-by-step development of the mathematical for-
mulation resulting from the application of the PCA-based uncertainty set
(refer to Equations 3 and 4) to the uncertainties in Equation 2 of the objec-
tive function.

max
pUnc∈Upca

pY rGap ·
∑

pe,s,d,h

pUncpe,y · (vQPEImppe,y,s,d,h + vQPEDompe,y,s,d,h)

+
∑
ce

pUncce,y · vCENewCapce,y

(2)

s.t.

um = s̄unc +

m1∑
m=1

(
αmγup

m,unc + (1− αm)γdo
m,unc

)
+

M∑
m=m1+1

ρm,unc, unc ∈ (pe ∪ ce) (3)

0 ≤ αm ≤ 1 (4)

where γup
m,unc =

(
ωi

||di||di

)
unc

and γdo
m,unc =

(
ωi

||di||di

)
unc

.

The following maximization problem is obtained by applying 3 to 2:

max
αm

pY rGap ·
∑

pe,s,d,h

(s̄pe +

m1∑
m=1

(
αmγup

m,pe + (1− αm)γdo
m,pe

)
+

M∑
m=m1+1

ρm,pe) · (vQPEImppe,y,s,d,h

+vQPEDompe,y,s,d,h) +
∑
ce

(s̄ce +

m1∑
m=1

(
αmγup

m,ce + (1− αm)γdo
m,ce

)
+

M∑
m=m1+1

ρm,ce) · vCENewCapce,y

(5)

Factoring out αm, we obtain the following equation with only the elements
that depend on this variable:

max
αm

m1∑
m=1

αm ·
(
pY rGap ·

∑
pe,s,d,h

(γup
m,pe − γdo

m,pe) · (vQPEImppe,y,s,d,h + vQPEDompe,y,s,d,h)

+
∑
ce

(γup
m,ce +−γdo

m,ce) · vCENewCapce,y

)
(6)

12



Considering the dual problem of minimizing the negative of equation 6,
including constraint 4, results in:

maxβm (7)

s.t.

−βm ≤ −
(
pY rGap ·

∑
pe,s,d,h

(γup
m,pe − γdo

m,pe) · (vQPEImppe,y,s,d,h + vQPEDompe,y,s,d,h)

+
∑
ce

(γup
m,ce +−γdo

m,ce) · vCENewCapce,y

)
(8)

βm ≥ 0 (9)

Applying the Strong Duality Theorem:

m1∑
m=1

βm =

m1∑
m=1

αm ·
(
pY rGap ·

∑
pe,s,d,h

(γup
m,pe − γdo

m,pe) · (vQPEImppe,y,s,d,h + vQPEDompe,y,s,d,h)

+
∑
ce

(γup
m,ce +−γdo

m,ce) · vCENewCapce,y

)
(10)

0 ≤ αm ≤ 1 (11)

βm ≥
(
pY rGap ·

∑
pe,s,d,h

(γup
m,pe − γdo

m,pe) · (vQPEImppe,y,s,d,h + vQPEDompe,y,s,d,h)

+
∑
ce

(γup
m,ce +−γdo

m,ce) · vCENewCapce,y

)
(12)

Substituting into the original problem, the following equations result from
applying the PCA-based uncertainty set:

vUncCosty =

m1∑
m=1

βm +
(
pY rGap ·

∑
pe,s,d,h

(s̄pe +

m1∑
m=1

γdo
m,pe +

M∑
m=m1+1

ρm,pe) · (vQPEImppe,y,s,d,h

+vQPEDompe,y,s,d,h) +
∑
ce

(s̄ce +

m1∑
m=1

γdo
m,ce +

M∑
m=m1+1

ρm,ce) · vCENewCapce,y

)
(13)
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s.t.

βm ≥
(
pY rGap ·

∑
pe,s,d,h

(γup
m,pe − γdo

m,pe) · (vQPEImppe,y,s,d,h + vQPEDompe,y,s,d,h)

+
∑
ce

(γup
m,ce +−γdo

m,ce) · vCENewCapce,y

)
(14)

βm ≥ 0 (15)

Thus, Equation 13 is integrated into the objective function. Addition-
ally, Equations 14 and 15 are constraints that have been incorporated into
the model as a result of the mathematical development stemming from the
application of the PCA-based uncertainty set.

Methodological procedure to apply the PCA-based uncertainty set to an energy
model

The application’s steps are shown in the flowchart in Figure 3. Starting
with the correlated data, historical data must be collected and preprocessed
in order to apply PCA, which reduces the dimensionality of the data ma-
trix and generates the covariance matrix, eigenvectors, and eigenvalues. At
this point, the number of principal components is determined to introduce
the appropriate uncertainty set into the model. As mentioned earlier, the
decision on the number of components allows the decision-maker to balance
the trade-off between tractability and conservativeness: incorporating more
principal components can increase computational complexity, but in return,
it provides a more robust solution. This uncertainty set, with the selected
number of principal components, is then incorporated into the energy model.
In our case, which considers correlated uncertainties in the objective func-
tion, this equation is modified as detailed in the step-by-step formulation in
the previous subsection. Once the results of applying this methodology are
obtained, the analysis may prompt the decision-maker to consider increas-
ing the number of principal components based on their conclusions. This
process can be repeated, modifying the number of components as needed.
In this way, a robust strategy is developed that not only protects against
uncertainties but also accounts for the correlations between them.

It is important to note that during the data preprocessing stage, two key
modifications can be applied to tailor the methodology to future trends.
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First, the correlation matrix can be adjusted to reflect updated correlation
levels between pairs of uncertain parameters, allowing for the incorporation
of potential changes in their relationships. Second, the mean values used
to construct the uncertainty set, represented by the parameter s̄unc, can be
updated based on projected trends, ensuring the methodology aligns with
forward-looking scenarios.

Case study

The case study examines the correlations between fuel prices and invest-
ment costs in energy technologies. Although the correlations of all fuels and
technologies are considered, the study places special emphasis on fossil fuels
and renewable technologies, as these are modified to create scenarios based
on different levels of correlation. The objective is to understand how ac-
counting for these correlations affects decision-making and how changes in
these correlations impact the deployment of renewable energy sources.

While the analysis could be applied to any country or region, it focuses on
the decarbonization of the Spanish energy system, which, in our opinion, pro-
vides a very interesting setting for this analysis. Spain features a relatively
large and diverse energy system, rich in renewable resources, thus helping
to show the applicability of our methodology to a real national energy plan-
ning exercise, and also showing the interactions among the many different
technologies that may play a role in the energy transition. This, we believe,
helps in generalizing the conclusions obtained in the study to other regions.
Furthermore, Spain is already undergoing an ambitious transformation of its
energy system, with a large share of renewables, and so the interactions and
correlations, and their impacts, are better observed compared to other coun-
tries with lower shares of these technologies.

This case study aligns with the national CO2 emission targets for 2030 as
outlined in the Spanish National Energy and Climate Plan (NECP). The base
year for calibration is 2020, with detailed calibration information provided
in Appendix B. As noted earlier, the data preprocessing stage allows for tai-
loring the methodology to future trends by updating the mean values and
correlation levels. For this case study, the mean values used to construct the
correlated uncertainty sets (s̄unc) have been updated to reflect the expected
projections of uncertainties for 2030. The number of principal components
m1 is 10.
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Figure 3: Flowchart illustrating the step-by-step application of PCA-based uncertainty
set in an energy model
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The correlation matrix has also been adjusted to explore three different sce-
narios, capturing varying levels of correlation between uncertain parameters
and evaluating their impact on investment strategies (correlation values are
provided in Appendix C):

• Uncorrelated scenario: This scenario uses the budget-based robust op-
timization technique proposed by Bertsimas and Sim [34], assuming no
correlations. It serves as a baseline for comparison with other scenar-
ios, providing a reference point to evaluate the impact of accounting
for correlations.

• Positive correlation scenario: Historical data point to a positive corre-
lation between primary energy prices and technology investment costs.
In this scenario, this correlation is adjusted with a coefficient of 0.5.
This scenario assumes that increases (or decreases) in fossil fuel prices
lead to corresponding increases (or decreases) in renewable investment
costs due to higher (or lower) costs associated with materials, produc-
tion, transportation, and installation processes reliant on fossil fuels.

• Negative correlation scenario: This approach sets correlation coeffi-
cients to -0.5, indicating an inverse relationship: High (or low) fossil
fuel prices accelerate (or slow down) the learning curve of renewables,
reducing (or increasing) their costs and enhancing (or worsening) their
competitiveness through greater (or lesser) R&D efforts.

Please note that while these scenarios offer a basic framework, real-world
correlations are more nuanced, with coefficients ranging from -1 to 1. The
selected correlation coefficients are designed to be representative of their cor-
responding scenarios and provide meaningful insights. Additionally, we ran
other scenarios with different correlation levels, and the results did not show
significant differences to justify their inclusion for interpreting the differences
between positive, negative, and no correlation scenarios. Therefore, to facil-
itate the analysis and the drawing of conclusions, these additional scenarios
were not included.

Therefore, these scenarios provide a comprehensive view of how different cor-
relations can influence the deployment of renewable energy technologies for
achieving the decarbonization goals of Spain by 2030.
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Results

The uncorrelated scenario serves as a baseline for comparison, with re-
sults for positive and negative correlations presented against it. However,
common elements across scenarios are worth analyzing, as they reveal con-
sistent patterns and useful insights regardless of correlation assumptions.

On the one hand, Table 1 highlights a significant reliance on gas power plants
across all scenarios. This dependence on fossil fuel technologies can be at-
tributed to reduced nuclear capacity in all scenarios, falling below 2 GW, and
to the firmness and adequacy constraints of the openMASTER model, which
require backup for increased variable capacity from wind and solar sources.
To mitigate emissions from the electric mix, Carbon Capture and Storage
(CCS) technologies play a notable role in reducing emissions from gas-based
technologies in all scenarios.

Regarding renewable energies, hydroelectric capacity shows minimal expan-
sion due to geographical constraints on maximum capacity. Pumped hydro
also increases marginally across all scenarios, likely due to high costs of new
capacity, which reduce its competitiveness compared to gas power plants, a
trend expected to continue through 2030. Additionally, all three scenarios
show a clear preference for wind power over solar. This preference may stem
from the better adaptation of wind power’s generation profile to demand,
hence reducing the need for backup.

Concerning CO2 emissions in 2030, total emissions are nearly identical across
scenarios, around 100 Mt, complying with the emission cap set, as depicted
in Figure 6. However, significant differences exist in the sectoral distribution
of these emissions, particularly affecting the energy generation and trans-
portation sectors.

Under the scenario in which we assume a positive correlation, the strat-
egy varies notably from the uncorrelated baseline. It exhibits higher crude oil
refinery capacity and minimal biofuel refining capacity, indicating a greater
reliance on oil derivatives. This is supported by higher consumption of oil
derivatives and natural gas, which together account for nearly 60% of the fi-
nal energy mix, as depicted in Figure 4. In contrast, the uncorrelated baseline
scenario relies more on biofuels, displacing both fossil fuels and conventional
electricity generation.

In the transportation sector, which accounts for the highest greenhouse gas
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Conversion energy capacity
[GW]

2020
2030

Neg Unc Pos

Nuclear 7.4 1.9 1.9 1.9
Coal 10.2 0 0 0
CCGT 26.6 18.8 16.4 13.1
CCGT+CCS - 14 7.7 12.1
OCGT - 8.7 6 9.5
OCGT+CCS - 0 0 0
Fuel Oil 3.7 0 0 0
Hydro 14 14 14 14
Wind Onshore 26.7 90.8 67.6 75.7
Wind Offshore - 3 3 0
Solar PV 11 40.3 30.7 18.7
Solar Th 2.3 0 0 0.6
Biomass PP 1.4 0 0 0
Pumping storage 6.4 6.5 6.5 6.5
CHP 5.5 0 0 0
TOTAL ELECT 115 198 153.7 152

Oil Refinery 28 24 24.5 26.1
Biofuel 7 4.4 14.3 0.1
Regasification 76 81.5 48.2 75.2

Table 1: Capacity of installed energy conversion technologies (GW). The heatmap col-
ors facilitate comparison between the three scenarios (Neg: Negative correlation scenario;
Unc: Uncorrelation scenario; Pos: Positive correlation scenario) by highlighting the rela-
tive capacities within each technology using an orange gradient. Abbreviations: Spanish
National Energy and Climate Plan (NECP), Combined Cycle Gas Turbine (CCGT), Car-
bon Capture and Storage (CCS), Open Cycle Gas Turbine (OCGT), Photovoltaic (PV),
Thermosolar (Th), Power Plant (PP), Combined Heat and Power (CHP), Total electricity
generation capacity (TOTAL ELECT).
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Figure 4: Final energy mix in 2030 as a percentage of total final energy consumption.
Final energy vectors are aggregated into categories

Final energy
[TWh]

2030

Neg Unc Pos

Coal 3.0 3.0 3.0
Fuel Oil 2.6 2.9 2.9
Diesel 101.2 112.2 109.5
Gasoline 39.6 27.4 39.2
Kerosene 11.5 13.6 12.4
LPG 1.0 1.1 1.1
Oil Others 9.5 10.4 10.2
Natural Gas 191.4 147.8 215.9
Biomass 54.7 27.4 22.2
Biofuel 1.0 93.1 0.4
Electricity 291.6 222.5 247.0

Table 2: Total annual consumption detailed for final energy vectors for 2030 (TWh).
The heatmap colors facilitate comparison between the three scenarios (Neg: Negative
correlation scenario; Unc: Uncorrelation scenario; Pos: Positive correlation scenario) by
highlighting the relative capacities within each technology using an orange gradient. Ab-
breviations: Liquified Petroleum Gas (LPG), Other petroleum derivatives (Oil Others).
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emissions in Spain, the total final energy consumption indicates a strong
preference for emission reduction through natural gas and electrification over
biofuels, as shown in Figure 5. However, it exhibits around 10 TWh higher
consumption of oil derivatives compared to the uncorrelated baseline, as well
as the highest natural gas consumption, leading to the highest emissions in
this sector. This underscores the greater competitiveness of fossil fuels in a
scenario where the costs of renewables increase in tandem with them: EVs
become more expensive to operate if the renewable electricity mix also be-
comes costlier, transmitting these costs and giving fossil fuels a competitive
advantage. This translates directly to the car fleet, with a preference for
PHEVs to electrify part of the mobility and greater use of natural gas in
ICEVs. On the contrary, the reliance on biofuels in the uncorrelated baseline
scenario represents a clear preference for ICEV.

Renewable energy deployment in this scenario is the lowest, with a combined
wind and solar capacity of 94.4 GW, compared to 101.3 GW in the uncor-
related baseline, as observed in Table 1. Paradoxically, it accounts for the
lowest emissions in the energy generation sector. This can be attributed to
the electricity consumption being approximately 45 TWh lower than in the
negative correlation scenario, reducing overall emissions despite a lower re-
newable share. Additionally, a greater share of CCS provides lower-emission
electricity backup, especially important given the reduced nuclear capacity
and minimal hydropower growth. This adjustment in the electricity sector
compensates for higher emissions in the transportation sector, which heavily
relies on fossil fuels, thus meeting the 2030 emissions target.

An interesting phenomenon when assuming a positive correlation is the ab-
sence of offshore wind, in contrast to the other two scenarios where the maxi-
mum allowed capacity of 3 GW is installed, aligned with NECP planning due
to licensing constraints [37]. This can be explained by the significant corre-
lation between offshore wind deployment and crude oil prices [56]: offshore
wind and oil industries compete for vessels, oil majors’ investments in offshore
wind are negatively driven by the price of oil, and the price of oil influences
the cost of transport fuel, steel, and copper. This, again, underscores the
importance of considering correlations and their impact on decision-making.

If a negative correlation scenario is assumed, the investment strategy con-
trasts sharply with both the uncorrelated and positive correlation scenarios.
It features the highest level of electrification, approaching nearly 300 TWh
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Figure 5: Annual consumption of final aggregated energy vectors in the transportation
demand sector for 2030 (TWh).

Car fleet
[Million vehicles]

2030

Neg Unc Pos

ICEV 11.7 18.1 11.7
PHEV 0.3 0.0 2.3
EV 5.6 0.0 3.5

Table 3: Car fleet in 2030 (Millions of Vehicles). The heatmap colors facilitate comparison
between the three scenarios (Neg: Negative correlation scenario; Unc: Uncorrelation sce-
nario; Pos: Positive correlation scenario) by highlighting the relative number of vehicles
within each row using an orange gradient. Abbreviations: Internal Combustion Engine
Vehicle (ICEV), Plug-In Hybrid Electric Vehicle (PHEV), Electric Vehicle (EV).
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annually, as observed in Table 2. This electrification strategy is strongly
complemented by the highest deployment of wind and solar at 134.1 GW
aggregated, marking a nearly 40 GW difference compared to the other sce-
narios, as presented in Table 1. However, higher capacity in combined cycle
gas turbines enhances firm capacity and supports increased variable installed
capacity, resulting in the highest total installed capacity in the electricity sec-
tor among the scenarios. This is consistent with the greater electrification
of demand in this scenario. Nevertheless, this scenario exhibits the highest
emissions in the energy generation sector, primarily due to the lower capacity
of CCS for backup and significantly higher electricity consumption: despite
having the largest share of renewables in the electricity mix, it is not enough
to offset the increased generation.

This electrification, when assuming this negative correlation scenario, primar-
ily occurs in the transportation sector, resulting in a more diversified mix of
energy vectors. Specifically, natural gas and biofuels, though less prevalent
than in other scenarios, play significant roles. The car fleet predominantly
favors EVs over PHEVs. Additionally, ICEVs increase the use of natural
gas and biofuels, which is consistent with the overall energy consumption
patterns of the transportation sector.

Figure 6: Annual sectorial CO2 emissions for 2030 (Mt).

23



Conclusions and future work

This study is the first to incorporate correlations between uncertain pa-
rameters into a strategic energy planning model. Using a novel PCA-based
methodology, correlations between fuel prices and energy technology invest-
ment costs are examined in a case study on the decarbonization of the Span-
ish energy system, aligned with the 2030 CO2 emission reduction targets.
By developing scenarios with varying levels of correlation between fossil fuel
prices and renewable energy costs, the impact on decision-making processes
and the deployment of renewable energy technologies is assessed.

The case study results reveal that decarbonization strategies vary signifi-
cantly with the level of correlation. When assuming an uncorrelated scenario,
a key finding is that greater decarbonization in the transportation sector is
achieved by heavily investing in biofuels rather than electrification. This out-
come can largely be attributed to vehicle fleet inertia, where only vehicles at
the end of their life cycle are replaced. Consequently, while electric vehicle
adoption is slow by 2030, the existing ICEV fleet can still reduce emissions
through biofuels. This underscores the potential role of biofuels in the tran-
sitional decarbonization of transportation as EVs gradually replace ICEVs
under this assumption.

If the correlation between fossil fuel prices and renewable energy costs is pos-
itive, and beyond initial adoption barriers of EVs, such as investment cost,
home-based charging, and vehicle range, higher renewable electricity costs
make EV operation more expensive, hindering this transition. This finding
could be transferable to other electrifiable demands, such as those using heat
pumps or electrified industrial processes, which are key contributors to emis-
sions reduction. A particularly sensible technology in this regard is offshore
wind energy, which is deeply linked with the fossil fuel industry, and hence
subject to its fluctuations.

Our results have significant policy implications for the energy transition.
First, it shows the relevance of including these correlations into energy plan-
ning and the design of transition strategies. Policymakers, when deciding
upon decarbonization strategies, should take into account the correlation be-
tween uncertain parameters in order to produce robust and consistent path-
ways. The energy mix changes markedly across scenarios, suggesting that
strategies based on wrong correlation assumptions may lead to inefficient
investments and potential lock-ins. Therefore, introducing correlations into
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energy planning, and accurately understanding the expected sign and value
of those correlations, is crucial to produce robust and consistent strategies
and to minimize costly mistakes.

Second, policymakers should deploy policies that may help in decoupling un-
wanted correlations. For example, decoupling renewable energy costs and
fossil fuel prices can be done by investing in R&D to reduce the dependence
of renewable energy technologies on fossil fuels (e.g., by developing green
steel or concrete). Promoting a circular economy for materials can also help
achieve the same goal.

Additionally, faster green electrification of the production processes through
which transition technologies (renewables, batteries, etc.) are produced can
also help decouple their costs from fossil fuel prices. This electrification
should then be given priority in the decarbonization of industry. Another
policy that would help reduce the unwanted impacts of correlations would
be to use alternative fuels, not that dependent on fossil fuels for their man-
ufacturing: biofuels may play an important role in making decarbonization
strategies more robust in the presence of uncertain correlations.

Third, our results show that a positive correlation between fossil fuel prices
and renewable energy costs makes it more difficult to electrify transporta-
tion, residential, or industrial demands. Therefore, support policies may be
needed to address this reduced competitiveness (unless this positive correla-
tion has been minimized through other policies, as mentioned above). This
may call for a larger use of carbon pricing (which separates further the fossil
fuel price and renewable energy cost), or for stronger support systems for
low-carbon technologies (such as subsidies for electric vehicles or renewable
energy generation).

In this regard, it is worth noting that carbon prices, when determined in emis-
sions markets, are typically set by fossil fuel prices (typically the opportunity
cost of shifting to natural gas). Therefore, there is also a correlation between
fossil fuel prices and carbon prices in markets, which must be taken into ac-
count, and which generally goes against the original sign of the correlation.
Emissions markets can, therefore, play an interesting role as ”mitigators” of
the correlations analyzed in the study.

Finally, the existence of a correlation (positive or negative) between fossil
fuel prices and renewable energy costs should be accounted for by designing
support systems for renewables which are indexed to fossil fuel prices, as has
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already been done in some countries (e.g. Germany).

Moreover, this methodology has potential applications beyond the energy
sector and can be extended to explore interdependencies in other contexts.
For instance, the approach could be adapted to assess correlations in sectors
such as water or agriculture, where similar dynamics of resource dependen-
cies exist [57]. Additionally, it could support integrated planning across
interdependent systems, such as those with water-energy-food, by capturing
cross-sectoral correlations. From a regional perspective, the methodology
can provide insights into localized correlation dynamics, informing tailored
policies for regions with distinct economic structures, resource dependencies,
or decarbonization challenges.

Despite its contributions, the study has limitations that suggest directions
for future research. The methodology considers the level of correlation dur-
ing the data preprocessing phase, using these correlations to generate the
necessary parameters, such as eigenvalues and eigenvectors, for constructing
the uncertainty set. Consequently, modifying the level of correlation dy-
namically over time is not directly feasible within the current optimization
framework. However, a potential avenue for future research could involve
combining this methodology with adaptive optimization techniques. For ex-
ample, implementing a rolling horizon approach could enable the consecutive
optimization of subperiods, where the uncertainty set would be updated to
reflect varying levels of correlation over time. Although it would represent
a challenge both computationally and methodologically, this could provide
a more flexible framework for addressing evolving trends driven by market
transformations, policy shifts, and technological innovation, particularly in
analyses that extend toward long-term horizons. Furthermore, future work
could also explore correlations and interdependencies beyond fuel prices and
technology costs, expanding the applicability of the methodology to capture
broader interdependencies.

Data availability

The data used for this study are available in Appendices B and C of the
supplementary material.

Code availability

The open-source code for the openMASTERmodel is available at https://github.com/IIT-
EnergySystemModels/openMASTER. Further information related to the open-
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MASTER model, data and assumptions is available in [38].
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Appendix B. Case study calibration

The time-varying parameters are defined with initial values corresponding to the
year 2020 and final values for the year 2030. Intermediate values within this period
are determined using linear interpolation. This approach facilitates the modeling of
learning curves for emerging technologies and the fluctuations in fuel prices driven by
regulatory changes and variations in supply and demand. To account for changes in
annual demand, an annual growth rate is applied. Hourly demand is then calculated
using a load curve applied to the annual demand. In the following, the most signifi-
cant parameters for this case study are defined. More information can be found on
openMASTER’s GitHub webpage and on [20].

Primary energy Fuel price [EUR/MWh]

Nuclear 2.88
Imported Coal 8
Natural Gas 18.4
Liquefied Natural Gas 37
Crude Oil 40
Hydro Run off the River 0
Hydro with Reservoir Capacity 0
Mihi Hydro 0
Wind Onshore 0
Wind Offshore 0
Solar Photovoltaic 0
Solar Thermoelectric 0
Solar Thermal 0
Biomass Energy Crops 21
Biomass Agriculture Waste 17
Biomass Forestry Waste 8
Solid Waste 21
Bioethanol Production Inputs 54
Biodiesel Production Inputs 46
Biogas 104

Table B.2. Fuel prices for primary energy vectors in EUR per MWh.
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Energy Technologies Investment Cost [EUR/kW]

Nuclear Power 4800
Imported Coal Traditional 1450
Imported Coal Integrated Gasification Combined Cycle 1950
Imported Coal Super-critical Pulverised Coal 1650
Imported Coal Super-critical Pulverised Coal with CCS 3400
Combined Cycle Gas Turbine Traditional 550
Combined Cycle Gas Turbine with CCS 1750
Open Cycle Gas Turbine Traditional 450
Open Cycle Gas Turbine with CCS 900
Fuel Oil Traditional 784
Hydro Run off the River 1715
Hydro with Reservoir Capacity 2100
Hydro with Pumping Storage 3804
Mini Hydro 1715
Wind Onshore 1300
Wind Offshore 2800
Solar Photovoltaic Centralised with Tracking 463
Solar PV Distributed w/o Tracking (Industrial Sector) 645
Solar PV Distributed w/o Tracking (Other Uses Sector) 645
Solar Thermoelectric Centralised 3000
Solar Thermal Distributed Industry 848
Solar Thermal Distributed Other Uses 848
Biomass Electricity Centralised 2517
Solid Waste 5503
Cogeneration in Industry (Natural Gas) 1425
Cogeneration in Other Uses (Natural Gas) 2093
Cogeneration in Industry (Biomass) 2137.5
Cogeneration in Other Uses (Biomass) 3139.5
Refinery Low Complexity 114
Refinery High Complexity 330
Refinery Very High Complexity 653
Bioethanol Production Plant 1040
Biodiesel Production Plant 510
Regasification Terminal 35

Table B.3. Investment costs for energy technologies in EUR per kW.
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Table B.4. Previous installed capacity and conversion losses for different energy technolo-
gies.

Energy Technologies Previous Installed
Capacity [GW]

Conversion
Losses
[%]

Nuclear Power 7.4 0.62
Imported Coal Traditional 3.0 0.58
Imported Coal Integrated Gasification Combined Cycle 3.0 0.52
Imported Coal Super-critical Pulverised Coal 1.0 0.55
Imported Coal Super-critical Pulverised Coal with CCS 0.5 0.64
Combined Cycle Gas Turbine Traditional 26.6 0.42
Combined Cycle Gas Turbine with CCS 0.0 0.54
Open Cycle Gas Turbine Traditional 0.0 0.55
Open Cycle Gas Turbine with CCS 0.0 0.65
Fuel Oil Traditional 3.7 0.62
Hydro Run off the River 2.15 0.0
Hydro with Reservoir Capacity 12.0 0.0
Hydro with Pumping Storage 3.3 0.30
Mini Hydro 0.0 0.0
Wind Onshore 28.0 0.0
Wind Offshore 0.0 0.0
Solar Photovoltaic Centralised with Tracking 8.4 0.0
Solar Photovoltaic Distributed without Tracking (Indus-
trial Sector)

0.0 0.0

Solar Photovoltaic Distributed without Tracking (Other
Uses Sector)

0.0 0.0

Solar Thermoelectric Centralised 2.3 0.0
Solar Thermal Distributed Industry 0.0 0.0
Solar Thermal Distributed Other Uses 0.0 0.0
Biomass Energy Crops Centralised 0.32 0.61
Biomass Agriculture Waste Centralised 0.68 0.61
Biomass Forestry Waste Centralised 0.0 0.61
Solid Waste 0.7 0.61
Cogeneration in Industry (Natural Gas) 2.4 0.26
Cogeneration in Other Uses (Natural Gas) 2.4 0.27
Cogeneration in Industry (Biomass) 0.0 0.26
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Table B.4. (continued)

Energy Technologies Previous Installed
Capacity [GW]

Conversion
Losses
[%]

Cogeneration in Other Uses (Biomass) 0.0 0.27
Refinery Low Complexity 62.2 0.07
Refinery High Complexity 24.3 0.09
Refinery Very High Complexity 0.4 0.17
Bioethanol Production Plant 0.4 0.0
Biodiesel Production Plant 6.7 0.01
Regasification Terminal 76.0 0.01

Appendix C. Correlation matrix for the case study

The correlation matrices utilized are presented in the following tables. These
correlations have been calculated based on historical data from various sources and
normalized using the z-score technique.

These sources include (i) BloombergNEF: investment costs of non-renewable en-
ergy technologies (nuclear, CHP, coal and gas-fired power plants), onshore and off-
shore wind, solar PV, and biomass power plants; (ii) IRENA renewable power gen-
eration costs 2022 report [21]: investment costs of hydroelectric technologies; (iii)
ESA Atomic [22]: natural uranium price; (iv) MIBGAS [23]: natural gas and LNG
prices; (v) Brent market [24]: crude oil price; (vi) AVEBIOM [25]: biomass price.

The data from BloombergNEF is subscription-based and not publicly available,
so it is not shown in this work. The remaining sources can be consulted in the
references provided.

Regarding the correlation levels between fossil fuel prices and renewable energy
technology investment costs, the values of L in Table D.7. are adjusted by 0.5 for
the positive correlation scenario and -0.5 for the negative correlation scenario.
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